Smash Factor

Smash Factor is ball speed divided by club speed

Smash Factor relates to the amount of energy transferred from the club head to the golf ball.

The higher the smash factor the better the energy transfer. A golfer would hope to achieve a smash factor near 1.50 on driver shots.

That means for a 100 mph club speed the ball speed would be 150 mph. The higher the loft of the club, the lower the smash factor is expected to be. A PW should have a smash factor near 1.25.

DRIVER EXAMPLE

Golfer A has a club speed of 100 mph and a smash factor of 1.40. Golfer A's ball speed is 140 mph.

Golfer B has a club speed of 100 mph and a smash factor of 1.50. Golfer B's ball speed is 150 mph.

The 10 mph difference in ball speed between Golfer A and Golfer B equates to approximately 20 yards in distance between the two golfers even though they have the same club speed.

Technical Definition:

Smash Factor - The ratio between the Ball Speed and the Club Speed

Tour Averages

PGA TOUR

Driver – 1.49 6 iron – 1.38

LPGA Tour

Driver – 1.49 6 iron – 1.39

Male Amateur (Driver)

Scratch of Better – 1.49 5 HCP – 1.45 10 HCP – 1.45 Average Golfer (14.5) – 1.44 Bogey Golfer – 1.43

The standard assumption for smash factor comes from the TrackMan Optimizer. For the driver, a club speed of 94 mph, attack angle of 0 degrees, and optimized carry results in a smash factor of 1.46. For a 6-iron, a club speed of 80 mph and mid-trajectory results in a smash factor of 1.38. For a PW, a club speed of 72 mph and mid-trajectory results in a smash factor of 1.19.